Dijet Asymmetry in Pb+Pb Collisions at $\sqrt{s_{NN}} = 2.76$ TeV Using the ALICE Experiment

Isaac Mooney
Advisors: Joern Putschke, Rosi Reed
Wayne State University
National Science Foundation
Friday, August 8, 2014
A Large Ion Collider Experiment
Experiment at LHC
18 subdetectors in total
I focused on the EMCal (Electromagnetic Calorimeter) and the TPC (Time Projection Chamber)
“Our aim is to study the physics of strongly interacting matter at extreme energy densities, where the formation of a new phase of matter, the quark-gluon plasma [QGP], is expected.”*

* about ALICE

*aliceinfo.cern.ch
Covers almost the full TPC in η, but not ϕ
Detects neutral particles

Tracks only charged particles
FastJet 2.4.1 – “Longitudinally invariant Kt, anti-Kt, and inclusive Cambridge/Aachen clustering using fast geometric algorithms, with area measures and optional external jet-finder plugins”*

PYTHIA 8.130 – “a program for the generation of high-energy physics events…contains theory and models for a number of physics aspects, including hard and soft interactions, parton distributions, initial- and final-state parton showers, multiple interactions, fragmentation and decay.”**

ktROOT (ROOT 5.32.03 + ktJet libraries) – “The ROOT system provides a set of OO [Object-Oriented] frameworks with all the functionality needed to handle and analyze large amounts of data in a very efficient way”***

Software Environment

Learning some basic Linux commands
Brushing up on my C++
Learning ktROOT
Debugging

Challenges
- Hard scatter of colored partons
- Jet - cone of hadrons produced by hadronization of these partons
- Jets tell us about properties (kinematics and topology) of original partons
- Final state is color neutral
- Jet production well described by QCD/MC generators like Pythia
QCD

- Confinement – quarks bound as hadrons
- Asymptotic Freedom – at high energies, quarks and gluons interact weakly to produce QGP

QGP

- Hot, dense soup which cools instantly

Jets

- Back-to-back scatter
- Fast, high energy shower of particles
- Strongly interacting, but not fully absorbed

Jet Quenching –

- jets transfer energy/momentum to the medium while traversing (gluon bremsstrahlung)

Without this background, QCD works well, and our Pythia simulation is a good model.

Jets offer an internal x-ray of the medium, similar to a Rutherford scattering.

Why Jets?
$A_J = \frac{p_{T,1} - p_{T,2}}{p_{T,1} + p_{T,2}}$

- Comparing Full-Full dijets to Full-Charged ones (useful since EMCal does not have full ϕ coverage)
- Making this comparison, after adding a background
- Reducing background effects on A_J
Compared the effects of different cuts

Cuts included: $\Delta \Phi$ (to obtain a true pair), η (because of detector limitations), p_T (to model true kinematics), R_{cone} (balance of background exclusion, and jet inclusion)

Effect: larger R_{cone}, more balanced jets at higher p_T
Results I.

Full-Full A_J v. Full-Charged A_J v. Subleading Charged p_T

3D plots contain quickly accessible information, obtained by taking projections

- Constituent p_T cut: 2 GeV
- Leading jet p_T range: 80 – 100 GeV
Results II.

Full-Charged A_j v. Full-Full A_j for varying subleading charged jet p_T

10 – 20 GeV

20 – 40 GeV

40 – 60 GeV*

60 – 80 GeV

80 – 100 GeV**

10 – 100 GeV

- Constituent p_T cut: 2 GeV
- Leading jet p_T range: 80 – 100 GeV

*best p_T range

**reflects leading jet kinematics
Because of more energetic constituents, background effects are reduced, so plots correspond well to Pythia-only ones.

Constituent p_T cut: 2 GeV
Leading jet p_T range: 80 – 100 GeV

Results II. with background

Full-Charged A_j v. Full-Full A_j for varying subleading charged jet p_T with background
Results III.

A_J for various p_{T} cuts

- Full-Full A_J
- Full-Charged A_J

- Constituent p_{T} cut: 2 GeV
- Leading jet p_{T} range: 80 – 100 GeV
Results IV.

- Constituent p_T cut: 2 GeV
- Leading jet p_T range: 80 – 100 GeV

A_J without background, compared to A_J with background
Further study will be required to fully map these two onto each other.

Conclusion: It is feasible to use the charged away side (TPC only) jet, applying a background suppression constituent p_T cut to measure the dijet imbalance, A_J in PbPb collisions in ALICE w.r.t. the full-full dijet case.

*2/3 of particles are charged, so 40 GeV subleading p_T cut is comparable to 30 GeV subleading charged p_T cut

Results V.

Full-Full A_J with Full-Charged A_J with background

- Constituent p_T cut: 2 GeV
- Leading jet p_T range: 80 – 100 GeV
References

- https://sites.google.com/albl.gov/relativistic-nuclear-collisions/home