Correlations in Heavy Ion Collisions

Mike Catanzaro

May 22, 2009
This summer, I’ll be studying Heavy Ion Collisions.

These collisions create hundreds of particles, in a very hot dense state known as the Quark Gluon Plasma.
The Basic Idea

- This summer, I’ll be studying Heavy Ion Collisions.
- These collisions create hundreds of particles, in a very hot dense state known as the Quark Gluon Plasma.
- In the collisions, we’ll study two causes of particle correlation:
 - Jets
 - Radial Flow
The Basic Idea

- This summer, I’ll be studying Heavy Ion Collisions.
- These collisions create hundreds of particles, in a very hot dense state known as the Quark Gluon Plasma.
- In the collisions, we’ll study two causes of particle correlation:
 - Jets
 - Radial Flow
- By correlated, we mean that given a particle with some momentum p_{t_1}, how likely are we to find another particle with momentum p_{t_2}.
When one quark scatters off another, flux tubes arise between the quarks.
When one quark scatters off another, flux tubes arise between the quarks.
When one quark scatters off another, flux tubes arise between the quarks.
Jets (cont’d)

- As the quarks separate (due to very high transverse momenta), the flux tubes fragment, and particles are created along the flux tube with momentum in the same general direction, with some random velocities as well.
Jets (cont’d)

- As the quarks separate (due to very high transverse momenta), the flux tubes fragment, and particles are created along the flux tube with momentum in the same general direction, with some random velocities as well.
- Hence, these jets yield particles with very high transverse momenta.
Jets (cont’d)

- As the quarks separate (due to very high transverse momenta), the flux tubes fragment, and particles are created along the flux tube with momentum in the same general direction, with some random velocities as well.
- Hence, these jets yield particles with very high transverse momenta.
Radial Flow

- During the collision, as the nuclei annihilate through one another, flux tubes arise down the pipe.
Radial Flow

- During the collision, as the nuclei annihilate through one another, flux tubes arise down the pipe.
- Again, as they separate, the flux tubes fragment, creating particles with very low transverse momenta.
Radial Flow

- During the collision, as the nuclei annihilate through one another, flux tubes arise down the pipe.
- Again, as they separate, the flux tubes fragment, creating particles with very low transverse momenta.
- However, due to the difference in pressure (the extremely high density of particles in the center region and lack of outside this region), these particles are pushed outward from the center of the pipe.
Radial Flow

- During the collision, as the nuclei annihilate through one another, flux tubes arise down the pipe.
- Again, as they separate, the flux tubes fragment, creating particles with very low transverse momenta.
- However, due to the difference in pressure (the extremely high density of particles in the center region and lack of outside this region), these particles are pushed outward from the center of the pipe.
Radial Flow (cont’d)

- Just as before, these particles will have random velocities, but will have a component of velocity in the radial direction.
Radial Flow (cont’d)

- Just as before, these particles will have random velocities, but will have a component of velocity in the radial direction.
- This shell of particles will be pushed outward radially, and we see a very similar picture to that of the jet model.
Radial Flow (cont’d)

- Just as before, these particles will have random velocities, but will have a component of velocity in the radial direction.
- This shell of particles will be pushed outward radially, and we see a very similar picture to that of the jet model.
Radial Flow (cont’d)

- Just as before, these particles will have random velocities, but will have a component of velocity in the radial direction.
- This shell of particles will be pushed outward radially, and we see a very similar picture to that of the jet model.
In studying the correlations among particles in these collisions, we’d like to be able to distinguish the effects of the radial flow model and the jet model.
In studying the correlations among particles in these collisions, we’d like to be able to distinguish the effects of the radial flow model and the jet model.

To study these differences, I’ll use an event generator to show how correlations differ in the jet model and in the radial flow model.